Section 8.4
 Inference for Linear Regression

Stats 7 Summer Session II 2022

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared apart?" The data consist of IQ scores for [an assumed random sample of] 27 identical twins, one raised by foster parents, the other by the biological parents.

Practice

Which of the following is false?
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779, Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
(a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
(b) Roughly 78\% of the foster twins' IQs can be accurately predicted by model.
(c) The linear model is fosterI $Q=9.2+0.9 \times$ bioI Q
(d) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Inference for the slope

- With a linear model our focuses are usually either:
- Predicting values of the response for a given value of the explanatory/predictor variable
- Studying the linear relationship between the response and the explanatory variables
- Testing if the slope, β_{p}, is non zero (i.e. the two variables are linearly related)
- Creating a confidence interval to estimate the slope
- We could do the same investigation with the intercept, β_{0}, but the intercept is rarely of interest

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?
(a) $H_{0}: b_{0}=0 ; H_{A}: b_{0} \neq 0$
(b) $H_{0}: \beta_{0}=0 ; H_{A}: \beta_{O} \neq 0$
(c) $H_{0}: b_{1}=0 ; H_{A}: b_{1} \neq 0$
(d) $H_{0}: \beta_{1}=0 ; H_{A}: \beta_{1} \neq 0$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) / SE

- Point estimate $=b_{1}$ is the observed slope.
- $S E_{b 1}$ is the standard error associated with the slope.
- Degrees of freedom associated with the slope is $d f=n-2$, where n is the sample size.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
\begin{aligned}
T & =\frac{0.9014-0}{0.0963}=9.36 \\
d f & =27-2=25 \\
p-\text { value } & =P(|T|>9.36)<0.01
\end{aligned}
$$

Percent college graduate

vs. percent Hispanic in LA

What can you say about the relationship between \% college graduate and \% Hispanic in a sample of 100 zip code areas in LA?

\% college educated vs. \% Hispanic in LA, another look

What can you say about the relationship between of \% college graduate and \% Hispanic in a sample of 100 zip code areas in LA?

\% college educated vs. \% Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
\%Hispanic	-0.7527	0.0501	-15.01	0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75\% decrease in \% of college grads.
(b) A 1\% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in \% of college grads.
(c) An additional 1\% of Hispanic residents decreases the \% of college graduates in a zip code area in LA by 0.75%.
(d) In zip code areas with no Hispanic residents, \% of college graduates is expected to be 75%.
\% college educated vs. \% Hispanic in LA - linear model
Do these data provide convincing evidence that there is a statistically significant relationship between \% Hispanic and \% college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for \% Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

How reliable is this p-value if these zip code areas are not randomly selected?

Not very...

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 9.2076 | 9.2999 | 0.99 | 0.3316 |
| biolQ | 0.9014 | 0.0963 | 9.36 | 0.0000 |

(a) $9.2076 \pm 1.65 \times 9.2999$
$n=27 d f=27-2=25$
(b) $0.9014 \pm 2.06 \times 0.0963$
> qt((1-0.95) / 2, df = 25)
(c) $0.9014 \pm 1.96 \times 0.0963$
[1] -2.059539
(d) $9.2076 \pm 1.96 \times 0.0963$

Recap

- Inference for the slope for a single-predictor linear regression model:
- Hypothesis test:

$$
T=\frac{b_{1}-\text { null value }}{S E_{b_{1}}} \quad d f=n-2
$$

- Confidence interval:

$$
b_{1} \pm t_{d f=n-2}^{\star} S E_{b_{1}}
$$

- The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives $b_{p}, S E_{b p}$, and two-tailed p -value for the t-test for the slope where the null value is 0 .
- We rarely do inference on the intercept, so we'll be focusing on the estimates and inference for the slope.

Caution

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.
- The ultimate goal is to have independent observations.

Derivative of slides developed by Mine Çetinkaya-Rundel of OpenIntro. Translated from LaTeX to Google Slides by Curry W. Hilton of OpenIntro. The slides may be copied, edited, and/or shared via the CC BY-SA license

