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● We are often interested in population parameters.

● Since complete populations are difficult (or impossible) to collect 
data on, we use sample statistics as point estimates for the 
unknown population parameters of interest.

● Sample statistics vary from sample to sample.

● Quantifying how sample statistics vary provides a way to 
estimate the margin of error associated with our point estimate.

● But before we get to quantifying the variability among samples, 
let's try to understand how and why point estimates vary from 
sample to sample.

Parameter estimation



Suppose we randomly sample 1,000 adults from each state in the US. 
Would you expect the sample means of their heights to be the same, 
somewhat different, or very different?

Not the same, but only somewhat different.
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41% ± 2.9%: We are 95% confident that 38.1% to 43.9% of the public believe 
young adults, rather than middle-aged or older adults, are having the 
toughest time in today's economy.

49% ± 4.4%: We are 95% confident that 44.6% to 53.4% of 18-34 years olds 
have taken a job they didn't want just to pay the bills.

Margin of error



Suppose the proportion of American adults who support the 
expansion of solar energy is p = 0.88, which is our parameter of 
interest. Is a randomly selected American adult more or less likely to 
support the expansion of solar energy?

More likely.



Suppose that you don’t have access to the population of all American 
adults, which is a quite likely scenario. In order to estimate the 
proportion of American adults who support solar power expansion, 
you might sample from the population and use your sample proportion 
as the best guess for the unknown population proportion.

Steps:

● Sample, 1000 American adults from the population, and record 
whether they support solar power or not expansion.

● Find the sample proportion.
● Plot the distribution of the sample proportions obtained by 

members of the class.



Suppose you were to repeat this process many times and plot the 
results. What you just constructed is called a sampling distribution.

Sampling distribution



What is the shape and center of this distribution?

Sampling distribution

The distribution looks 
symmetric and somewhat 
bell-shaped.



Based on this distribution, what do you think is the true population 
proportion?

Sampling distribution

The center of the 
distribution: about 0.88.



● In real-world applications, we never actually observe the 
sampling distribution, yet it is useful to always think of a point 
estimate as coming from such a hypothetical distribution.

● Understanding the sampling distribution will help us characterize 
and make sense of the point estimates that we do observe.

Sampling distributions are never observed



Sample proportions p̂’s will be nearly normally distributed with 
mean equal to the population proportion, p, and standard error 
equal 

It wasn’t a coincidence that the sampling distribution we saw 
earlier was symmetric, and centered at the true population 
population.

We won’t go through a detailed proof of why 
but note that as n increases SE decreases.
● As n increases samples will yield more consistent p̂’s,

i.e. variability among p̂’s will be lower.

Central Limit Theorem



Certain conditions must be met for the CLT to apply:

CLT - conditions

Sample size

There should be at least 10 expected successes and 10 expected 
failures in the observed sample.

This is difficult to verify if you don’t know the population proportion 
(or can’t assume a value for it). In those cases we look for the number 
of observed successes and failures to be at least 10.

Independence

Sampled observations must be independent. This is difficult to verify, 
but is more likely if

● random sampling/assignment is used, and
● if sampling without replacement, n < 10% of the population.



When p is unknown

The CLT states

with the condition that np ≥ 10 and n(1 − p) ≥ 10.

However, we often don’t know the value of p, the population 
proportion.

In these cases we substitute p̂ for p.



When np or n(1 - p) is small

Suppose we have a population where the true population proportion is p 
= 0.05, and we take random samples of size n = 50 from this population. 
We calculate the sample proportion in each sample and plot these 
proportions. Would you expect this distribution to be nearly normal? 
Why, or why not?

No, the success-failure condition is not met (50 x 0.05 = 2.5), so we 
would not expect the sampling distribution to be nearly normal.



What happens when np and/or n(1 − p) < 10



● When either np or n(1 − p) is small, the distribution is more 
discrete.

● When np or n(1 − p) < 10, the distribution is more skewed.

● The larger both np and n(1 − p), the more normal the distribution.

● When np and n(1 − p) are both very large, the discreteness of the 
distribution is hardly evident, and the distribution looks much 
more like a normal distribution.

When the conditions are not met...



The strategy of using a sample statistic to estimate a parameter is 
quite common, and it’s a strategy that we can apply to other statistics 
besides a proportion.

● Take a random sample of students at a college and ask them 
how many extracurricular activities they are involved in to 
estimate the average number of extra curricular activities all 
students in this college are interested in.

The principles and general ideas are from this chapter apply to other 
parameters as well, even if the details change a little.

Extending the framework for other statistics
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