Section 8.1 Line Fitting, Residuals, and Correlation

Stats 7 Summer Session II 2022

Modeling numerical variables

In this unit we will learn to:

- quantify the relationship between two numerical variables
- model numerical response variables using a numerical or categorical explanatory variable
- predict the value of the one variable given the value of the other

We will do this by fitting a line to data and evaluating how well the line represents the trend of the data

Poverty vs. HS graduate rate

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the percent of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

Fitting a line

Recall the formula for a line is

$$y = mx + b \text{ or } y = b + mx,$$

where b is the y-intercept (value of y when x is 0) and m is the slope (i.e. the change in y for a one unit increase in x)

In statistics we will denote b with $\beta_{\rm 0}$ and m with $\beta_{\rm 1}$, so we have

$$y = \beta_0 + \beta_1 x.$$

So:

 β_0 = value of y when x is 0

 β_1 = change in y for a one unit increase in x

Poverty vs. HS graduate rate

Consider if we wanted to fit a line to the data.

What is your guess of the y-intercept, β_0 ?

It is hard to tell with the x-axis concatenated, but it'll be a high value maybe around 70.

What is your guess of the slope, β_1 ?

It is negative and not too extreme, maybe close to -1.

Poverty vs. HS graduate rate

The linear model for predicting poverty from high school graduation rate in the US is

$$poverty = 64.78 - 0.62 * HS_{grad}$$

The "hat" is used to signify that this is an estimate.

So our estimate for β_0 is 64.78 and our estimate for β_1 is -0.62.

The high school graduate rate in Georgia is 85.1%. What poverty level does the model predict for this state?

64.78 - 0.62 × 85.1 = 12.018

Eyeballing the line

(a)

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad? Choose one.

Note that the data do not lie perfectly along our best-fit line.

Error when fitting a line

Linear regression is the statistical method for fitting a line to data where the relationship between two variables, x and y, can be modeled by a straight line with some error:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

The values β_0 and β_1 represent the model's parameters, and the error is represented by ϵ (the Greek letter epsilon), these are unknown values.

The parameters are estimated using data, and we write their point estimates as b_0 and b_1 .

Consider what a perfect linear relationship means: ($\varepsilon = 0$) we know the exact value of y just by knowing the value of x. This is unrealistic in almost any natural process.

We often drop the ε term when writing down the model since our main focus is often on the prediction of the average outcome.

Residuals

Residuals are the leftovers from the model fit:

Residuals

Residual (e_i) is the difference between the observed (y_i) and predicted (\hat{y}_i), for observation i.

 $e_i = y_i - \hat{y}_i$

% living in poverty in DC is 5.44% more than predicted.

So the residual value of that point is 5.44%.

% living in poverty in RI is 4.16% less than predicted.

So the residual value of that point is -4.16%.

Residuals

Residuals are helpful in evaluating how well a linear model fits a data set. We often display them in a residual plot.

Figure 8.8: Sample data with their best fitting lines (top row) and their corresponding residual plots (bottom row).

Quantifying the relationship

- *Correlation* describes the strength of the *linear* association between two variables.
- It takes values between -1 (perfect negative) and +1 (perfect positive).
- A value of 0 indicates no linear association.

Guessing the correlation

Which of the following is the best guess for the correlation between percent in poverty and percent HS grad?

Guessing the correlation

Which of the following is the best guess for the correlation between percent in poverty and percent female householder?

Linear correlation of non linear relationships

The correlation is intended to quantify the strength of a linear trend.

Nonlinear trends, even when strong, sometimes produce correlations that do not reflect the strength of the relationship; see three such examples

Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1?

Derivative of slides developed by Mine Çetinkaya-Rundel of OpenIntro. Translated from LaTeX to Google Slides by Curry W. Hilton of OpenIntro. The slides may be copied, edited, and/or shared via the <u>CC BY-SA license</u>